2025MBA報考測評申請中......

說(shuō)明:您只需填寫(xiě)姓名和電話(huà)即可免費預約!也可以通過(guò)撥打熱線(xiàn)免費預約
我們的工作人員會(huì )在最短時(shí)間內給予您活動(dòng)安排回復。

導讀:小伙伴們正在緊張的備考MBA聯(lián)考,在備考MBA的過(guò)程中,小伙伴們一定要準確掌握MBA數學(xué)中的每一個(gè)知識點(diǎn)。下面小編為大家總結了MBA聯(lián)考數學(xué)中常見(jiàn)的知識點(diǎn)之一:集合。提供給備考MBA數學(xué)的小伙伴們參考,希望可以幫助大家!

集合的概念

 
集合是數學(xué)中最重要的概念,是整個(gè)數學(xué)的基礎。集合的定義是:集合是具有相同性質(zhì)的元素的集體。這個(gè)定義屬于循環(huán)定義,因為集體就是集合。我的理解是:把一些互不相同的東西放在一起,就組成一個(gè)集合。唯一的要求是“互不相同”。集合中的元素可以是毫不相干的。元素可以是個(gè)體,也可以是一個(gè)集合。
 
比如1,2,{1,2}就構成一個(gè)集合,集合中有三個(gè)元素,兩個(gè)是個(gè)體,一個(gè)是集合。元素可以是數對,(x,y)是一個(gè)數對,代表二維坐標系中的一個(gè)點(diǎn)。如果集合中的元素沒(méi)有共同的特征,要完整地描述一個(gè)集合,我們被迫列出集合中的每一個(gè)元素,如{一陣風(fēng),一匹馬,一頭牛};如果存在相同的特征,描述就簡(jiǎn)單多了,如{所有正整數}、{所有英國男人}、{所有四川的下過(guò)馬駒的紅色的母馬},不用一一列舉。區間是特殊的集合,專(zhuān)門(mén)用來(lái)表示某些連續的實(shí)數的集合。集合在邏輯中的應用也十分廣泛,學(xué)好了集合,數學(xué)和邏輯都能提高,起到“兩個(gè)男人并排坐在石頭上”的作用。
 
集合中元素的個(gè)數是集合的重要特征。如果兩個(gè)集合的元素能有一一對應的關(guān)系,那么這兩個(gè)集合元素的個(gè)數就是相等的。在我們平時(shí)數物品的數量時(shí),說(shuō)1,2,3,4,5,一共有5個(gè),這時(shí)我們就是在把物品的集合與集合(1,2,3,4,5)建立一一對應的關(guān)系,正是因為物品數量與集合(1,2,3,4,5)的元素個(gè)數相等,所以我們才說(shuō)物品共有5個(gè)。集合分為有限集合和無(wú)限集合,元素的個(gè)數一般是針對有限集合說(shuō)的。對無(wú)限集合來(lái)說(shuō),有很多不同之處。比如{所有的正整數}與{所有的正偶數},后者只是前者的一個(gè)子集,但兩者存在一一對應的關(guān)系,因此元素個(gè)數“相等”。而{所有整數}與{所有實(shí)數}則不可能建立一一對應的關(guān)系,因為它們的無(wú)限的級別是不同的。對兩個(gè)無(wú)限集合,我們只強調是否能一一對應,不說(shuō)元素個(gè)數是否相等。
 
兩個(gè)集合有交集和并集的關(guān)系。交集是同時(shí)在兩個(gè)集合中的所有元素的集合,例如{中國人}交{男人}={中國男人},{韓國俊男}交{韓國美女}={河利秀}。并集是在其中任一個(gè)集合中的所有元素的集合。因為集合中的元素不能重復,所以取并集時(shí)要去掉重復了的元素,A并B的元素個(gè)數=A的元素個(gè)數+B的元素個(gè)數-A交B的元素個(gè)數。