2025MBA報考測評申請中......

說(shuō)明:您只需填寫(xiě)姓名和電話(huà)即可免費預約!也可以通過(guò)撥打熱線(xiàn)免費預約
我們的工作人員會(huì )在最短時(shí)間內給予您活動(dòng)安排回復。

導讀:提起MBA聯(lián)考數學(xué),相信很多MBA同學(xué)會(huì )比較頭疼,其實(shí)MBA老師告訴大家復習MBA數學(xué)解題可以這樣,只要搭出思維的框架就像寫(xiě)文章一樣,具體內容還沒(méi)想全,但頭腦中已經(jīng)有提綱。

比如已知等差數列的第二項和第七項,求數列第101項到第200項的和。在具體求之前,頭腦中就要先有解題的框架:
 
設數列首項a1和公差d為未知數—》列出兩個(gè)方程—》解出a1,d—》由數列通項公式計算前N項和公式—》計算S100和S200—》S200-S100得出答案。
 
這樣思路清晰,能提高解題速度。
 
此外,還可以學(xué)習一些通用解法。通用解法可以解決相同類(lèi)型的所有題目,無(wú)須再費時(shí)間思考。比如線(xiàn)代中的線(xiàn)性方程解法、高數中復合函數的二階導數、隱函數的偏導數、概率中的數學(xué)期望和方差等,都是通用解法,答題的速度和準確性依賴(lài)于自己的計算能力,雖然計算復雜,但不用花時(shí)間思考。
 
例如:已知數列通項公式A(N),求數列的前N項和S(N)。
 
這個(gè)問(wèn)題等價(jià)于求S(N)的通項公式,而S(N)=S(N-1)+A(N),這就成為遞推數列的問(wèn)題?! 〗夥ㄊ菍ふ乙粋€(gè)數列B(N),  使 S(N)+B(N)=S(N-1)+B(N-1)  從而S(N)=A(1)+B(1)-B(N)  猜想B(N)的方法:把A(N)當作函數求積分,對得出的函數形式設待定系數,利用B(N)-B(N-1)=-A(N)求出待定系數。
 
例題:求S(N)=2+2*2^2+3*2^3+...+N*2^N
 
解:S(N)=S(N-1)+N*2^N  N*2^N積分得(N*LN2-1)*2^N/(LN2)^2  因此設B(N)=(PN+Q)*2^N  則 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N、  (P*N+P+Q)/2*2^N=-N*2^N  因為上式是恒等式,所以P=-2,Q=2  B(N)=(-2N+2)*2^N  A(1)=2,B(1)=0  因此:S(N)=A(1)+B(1)-B(N)  = (2N-2)*2^N+2
 
對于求集合元素個(gè)數的問(wèn)題,也有通用解法。比如三個(gè)相交的集合,可以先畫(huà)出三個(gè)相交的圓圈,分別作為集合A、B、C,A在上,B在左下,C在右下。則A、B、C都被分為四部分,一共分為7塊。從最上開(kāi)始,沿逆時(shí)針?lè )较驅⒅車(chē)蝗υO為X1、X2.......X6,中間為X7,AUBUC的補集設為X8。那么題目中給出的任何條件都可以化成關(guān)于這八個(gè)未知數的方程組,然后變成解線(xiàn)性方程組的問(wèn)題。如果不用這種方法,題目中的A與B的交集并上C、A 與B的差交C等變化萬(wàn)千的條件容易把人攪得頭暈腦漲。
 
與通用解法相對應的是特殊解法。特殊解法方法巧妙,計算簡(jiǎn)便,可以大大提高解題速度。但掌握特殊解法需要靠大量的練習、總結、積累。如求函數 f(x)=x^2(1-x)在[0,1]上的最大值,可利用幾何平均數小于算術(shù)平均數的性質(zhì),直接得出:f(x)= x^2(1-x)=4*x/2*x/2*(1-x)<=4*[(x/2+x/2+1-x)/3]^3=4/27,等號在x/2=1-x,即x=2 /3時(shí)成立。從而最大值為4/27。無(wú)須求導數、駐點(diǎn)再代入原式計算。